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Abstract. The surface Coulomb problem consists of finding the locally stable equilibrium
configurations ofN equal charges confined to the surface of a sphere. In the range 26 N 6 112,
computer searches have located 2054 equilibrium states including 1824 that occur in chiral
pairs. The structural difference between the ‘left’ and the ‘right’ partners of each pair, i.e. the
degree of chiral symmetry breaking, can be described in quantitative terms by computing the
Hausdorff distance between the two enantiomorphic configurations. The results show that there is
a general, albeit not universal, correlation between increasing complexity, decreasing symmetry,
and increasing Hausdorff distance. The distribution of distances generated by the relative rotations
of the pairs yield an intrinsic characterization of their shapes. The orientations with minimum
distances, or optimum overlap, lead to reptation transforms that provide upper bounds for the
saddle point heights separating the chiral minima on the energy surfaces. Since the Hausdorff
metric constructions are generally asymmetric, the ‘left’→ ‘right’ and ‘right’ → ‘left’ distances
may differ. These distinctions are related to classical parity violation and Hilbert’s thirteenth
problem.

1. Introduction

Many symmetries of physical systems are of interest because of their dichotomic ‘all-or-
nothing’ character. For instance, all rigid geometric figures can be sorted into non-chiral or
chiral classes depending on whether or not they can be rotated into coincidence with their mirror
images. In group theoretical terms this simply means that all isometric transformations are
either proper or improper—there are no intermediate choices. At the next level of refinement,
it is often useful to introduce continuous measures that provide a quantitative scale indicating
the extent to which a symmetry is broken. For instance, parity violation inβ decay is a direct
consequence of the asymmetry in the direction of electron emission relative to the nuclear
spin; but the observation that this asymmetry parameter is as large as possible also ‘. . . points
to something even more drastic and significant’ [1]. Similarly, in hadron physics, the standard
QCD Hamiltonian includes a term that violates isospin symmetry: the importance of its effects
in perturbation expansions is determined by a symmetry-breaking parameter proportional to
the quark mass differencemd −mu [2].

Chiral symmetries are also essential elements of stereochemistry and crystallography. In
these contexts the motivation for assigning a ranking or measure to the chirality of molecules or
crystals originated from correlations between optical rotatory power and structural asymmetries
[3–5]. However, even after the accumulation of a century of data and analyses for a great variety
of systems, the construction of useful chirality measures still remains an unresolved issue [6–9].
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In a recent review, Mislow and collaborators pointed out that the Hausdorff distance between
sets could be adapted to quantifying the differences between a chiral object and its mirror image
[10]. They illustrated the computational viability of this approach by constructing optimally
chiral triangles and tetrahedra. A convenient ‘test-bed’ of much greater complexity is provided
by the equilibrium configurations ofN equal charges confined to the surface of a sphere.

Extensive computer searches, spanning the range 26 N 6 112, have identified 2054
locally stable states, of which 1824 occur in chiral pairs [11, 12]. These Coulomb states display
a rich variety of chiral structures ranging from simple ordered patterns atN = 15, 16, 23, . . . ,
to highly asymmetric, but non-random, configurations for larger values ofN . Typically, for
N > 80, the charge distributions become so irregular that there is practically no overlap with
any of the standard crystallographic symmetry classes [13]. Detecting the latent elements of
order in these complicated structures requires new kinds of indices such as the angular diversity
ratios and dipole moments introduced in [11, 12]; and—by fortunate coincidence—the rankings
generated by the Hausdorff–Mislow metric. This connection was in fact already anticipated
in [10] by the general conjecture that geometric figures with the least symmetry would also
have the greatest chirality. A numerical survey extending over the entire Coulomb ‘test-bed’
confirms this trend: chiral pairs of charge distributions separated by large Hausdorff distances
also tend to have irregular structures. However, even for the largest values ofN there are some
conspicuous fluctuations in the distances. These are associated with particular chiral pairs that
have at least one mutual orientation where the two charge distributions nearly coincide. This
sensitive correlation between the Hausdorff distances and the particle configurations is useful
in other applications that are not restricted to chiral symmetry.

Because the Coulomb configurations are restricted to the surface of a sphere, it is
computationally feasible with workstations to determine all of the Hausdorff distances between
sets of charges when their relative orientations are varied in 1◦ steps: with three rotational
degrees of freedom these gyrations sample about 2.3× 107 distinct positions. This procedure
yields good approximations for the minimum distances and also leads to statistical distributions
that specify the number of relative orientations corresponding to any particular value of the
Hausdorff distance. Numerical trials show that the variations of these distance distributions
reflect spatial conformations of the charge sets, and in this sense are equivalent to a ‘structural
spectroscopy’.

The special orientations associated with the minimum Hausdorff distances between two
Coulomb sets—sayA andB—approximate the maximum overlap of the two configurations.
Quantitatively this means that the spherical distances between every charge inA and the
nearest-neighbour charges inB are as small as possible. Since theA andB configurations
correspond to local minima on a multidimensional Coulomb ‘energy landscape’, it is plausible
that the lowest saddle point separating theA andB minima lies on a path between the states
of maximum overlap. Starting from this constraint, a numerical sampling of the profiles of
these paths is also feasible, and leads to upper bound estimates of the energy barrier height
separating chiral states.

A crucial feature of the Hausdorff metric is that the construction of the distance between
two setsA andB generally leads to asymmetric results. In particular, even ifA andB are
identified with chiral pairs of Coulomb configurations, it can be shown that there are mutual
orientations where the distance fromA toB is not necessarily equal to the distance fromB to
A. Of course, this asymmetry does not affect the intrinsic arbitrariness of the choice of labels:
the setA may be designated as the ‘left’ enantiomorph andB its ‘right’ reflected image, or
vice versa [14]. But this latitude does not exclude the possibility of distinguishing ‘left-A’
from ‘right-B ’ because theA toB Hausdorff distance may be larger than theB toA distance.
Furthermore, since the Hausdorff distances between finite sets of points are invariant under
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reflection, the direction of the distance inequality—e.g. ‘A toB ’ larger than ‘B toA’—is also
preserved under reflection. Accordingly, these metric constructions are examples of situations
where the conventional presumptions concerning the complete equivalence of chiral ‘left’ and
‘right’ configurations are not satisfied [15]. In cases where the Hausdorff distances may be
identified with physical observables—such as optical rotation—these asymmetries are related
to the origin of parity-violating effects.

2. Hausdorff metrics for the surface Coulomb configurations

The Hausdorff distance between two setsA andB is the smallest numberδ(A,B) satisfying
two conditions: (i) a spherical ball with radiusδ centred at any point ofA contains at least one
point ofB; and conversely (ii) a spherical ball of radiusδ centred at any point ofB contains
at least one point ofA [10, 16]. The essential purpose of this dual overlap construction is
to ensure thatδ satisfies all the criteria for a metric [17]. In particular, ifC is another
bounded set, then the three Hausdorff distances are constrained by the triangle inequality:
δ(A,C) + δ(C,B) > δ(A,B). SinceA andB are usually considered to be compact subsets
of a complete metric space with a metricm—thereby assigning quantitative meaning to the
radii of spherical balls—the Hausdorff distanceδ may be regarded as a ‘collective measure’
that is superposed on the underlyingm-metric.

Specializing this metric construction to the Coulomb states is straightforward. Let
CL(Er1, . . . , Eri, . . . , ErN) denote a chiral state specified by a set of radial vectors,|Eri | = 1, that
locate theN point charges on the surface of a unit sphere. Similarly, letCR(Er1, . . . ,Eri , . . . ,ErN)
denote its enantiomorphic partner. Furthermore, suppose that the 2N charges ofCL andCR

are simultaneously placed on the sphere. Then the angular separations between all pairings of
‘unlike’ charges—one each fromCL andCR—are given by the set ofN2 angles9ij where

9ij = cos−1(Eri · Erj ), . . . ,16 i, j 6 N. (1)

It is convenient to list these angles in the format of a square array:

911 912 . . . 918 . . . 91N

. . . . . . . . . .

. . . . . . . . . .

9i1 9i2 . . . 9ij . . . 9iN
. . . . . . . . . .

. . . . . . . . . .

9N1 9N2 . . . 9Nj . . . 9NN.

(2)

Suppose, for illustration, that918 happens to be the smallest angle in the first row, i.e.
918 = minj 91j . This means that918 is the angular radius of the smallest spherical cap
centred atEr1—the position of the first charge inCL—that also includes at least one charge, in
this case the eighth, belonging toCR. Similar minimal disc radii (minj 9ij ) appear in all the
other rows of the array. The largest angle among this set of minima

max
i

min
j
9ij = δ(CL→ CR) (3)

then evidently corresponds to the first part of the Hausdorff distance construction adapted to
configurations of points on the spherical surfaceS2. Specifically, equation (3) delimits the
angular radius of the smallest closed spherical caps ⊂ S2 with the property that whenevers
is centred on any of theCL charges, at least oneCR charge is contained ins. As indicated by
the notation, (3) corresponds to a ‘CL toCR ’ distance.
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The second part of the Hausdorff distance construction follows simply by replacing
the max–min by-rows algorithm in equation (3) by a complementary max–min by-columns
algorithm, namely:

max
j

min
i
9ij = δ(CR → CL). (4)

It is easy to verify that the structure of the array in (2) ensures that (4) yields the angular
radius of the smallest spherical caps̄ with the property that whenevers̄ is centred on any of
theCR charges, at least oneCL charge is contained in̄s. Since, in general,Eri · Erj 6= Erj · Eri ,
the array in (2) is not necessarily symmetric(9ij 6= 9ji), and therefore the max–min values
located by the row and column searches in (3) and (4) may be different. In such cases the
directed Hausdorff distances,δ(CL → CR) andδ(CR → CL), may be unequal even though
the underlyingm-metric is symmetric.

Finally, (3) and (4) may be combined to yield the standard Hausdorff distance between
setsCL andCR:

δ(CL, CR) = max[δ(CL→ CR), δ(CR → CL)]. (5)

This expression is obviously symmetric inCL andCR, and satisfies all the other criteria for
a metric including the triangle inequality [16]. Of course, the distances determined by (3)–
(5) also depend on the relative orientations of the setsCL andCR. Therefore, minimizing
with respect to the remaining degrees of freedom of the rotation groupO3, yields minimum
Hausdorff distances betweenCL andCR. In particular, equation (3) implies that the minimum
directed Hausdorff distance fromCL toCR is given by

δmin(C
L→ CR) = min

O3

max
i

min
j
9ij (6)

and similarly from (4) and (5)

δmin(C
R → CL) = min

O3

δ(CR → CL); δmin(CL, CR) = min
O3

δ(CL, CR). (7)

In practice, these rotational minimizations are implemented by recomputing the basic array of
angles in (2) for a large sample of relative orientations ofCL andCR.

The Hausdorff distances between Coulomb states consisting ofN charges placed on the
unit sphere are inversely related toN , i.e. δ ' N−1/2, because the surface charge densities
are O(4π/N), and this estimate bounds all characteristic angles—including the9ij in (2)—
by O(N−1/2). In order to separate these density variations from the chirality rankings it is
expedient to rescale the Hausdorff metrics by a ‘running’ normalization factor. LetC((Erl)N1 )
denote anyN -particle Coulomb configuration, andERP the position of an arbitrary additional
pointP on the surface of the unit sphere. Then

9max = max
∀ ERP

min
l

cos−1(Erl · ERP ) (8)

is the largest possible angle between a pointP located anywhere on the sphere and the nearest
charge inC. Clearly, for any particular chiral pair,ψmax(CL) = 9max(CR). The appropriate
set of Hausdorff–Mislow metrics is then obtained by normalizing all the equations (3)–(7),
e.g.,

d(CL→ CR) = δ(CL→ CR)/9max (9)

d(CL,CR) = δ(CL, CR)/9max (10)

dmin(C
L, CR) = δmin(CL, CR)/9max (11)

(here and in the succeeding,d designates the normalized distances). Obviously, these divisions
remove theN−1/2 scaling; and they have the nice additional feature that 06 d(CL,CR) 6 1,
where 0 means no chirality and 1 denotes maximum chirality.
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Table 1. Values of the normalizing angle9max for the Hausdorff metrics.

N E 9max N E 9max

12 49.165 25 0.652 58 1438.618 25 0.306
15 80.670 24 0.616 58 1438.625 51 0.316
16 92.911 66 0.581 58 1438.626 29 0.318
23 203.930 19 0.491 58 1438.627 22 0.328
24 223.347 07 0.532 · · ·
26 265.133 33 0.474 74 2387.072 98 0.280
27 287.309 61 0.466 74 2387.075 17 0.292
28 310.491 54 0.439 74 2387.079 93 0.278
30 359.603 94 0.439 · · ·
29 334.634 44 0.458 74 2387.087 29 0.296
30 359.603 94 0.439 · · ·
· · · 88 3416.720 19 0.249
· · · 88 3416.732 89 0.247
· · · 88 3416.772 58 0.252
· · · 88 3416.776 26 0.259
47 927.059 27 0.376 · · ·
47 927.062 27 0.374 · · ·
47 927.088 23 0.359 · · ·
47 927.141 09 0.344 100 4448.350 63 0.245
· · · · · ·
· · · 112 5618.044 88 0.215

3. Computations of the Hausdorff metrics

The numerical values of the angles in the basic array (2) can be obtained from the individual
charge positions. Following the conventions of [12] these are specified by the spherical
colatitudeφ, 0 6 φ 6 π , and the longitudeθ , −π 6 θ 6 π . It is then easy to check
that the angular separation between theith and thej th charges is given by

9ij = cos−1(sinφi sinφj [cos(θi − θj )− 1] + cos(φi − φj )). (12)

The normalizing angle9max (8) can be obtained by similar means. In practice, placing a point
P anywhere on the sphere(∀ ERP ) is approximated by stepping through the ranges ofφ andθ
in 1◦ intervals; this covers the sphere with a non-uniform grid of 180× 360= 64 800 points.
Locating the largest values of minl cos−1(Erl · ERP ) on this grid for all 2054 Coulomb states
requires about 104 minutes of CPU time on a SGI Indy workstation. Some representative
values of9max are listed in table 1. The first column indicates the number of chargesN . The
next column shows the energy of the configurations—a necessary distinction when multiple
chiral pairs occur for a particularN . Finally, the third column lists the corresponding values of
9max in radians. The numerical accuracy can be gauged by comparison with the exact results
for the icosahedron:

9max(12) = sin−1[( 2
3[1− 5−1/2])1/2] ' 0.652 358 14 (13)

and [18]

E(12) = 3 + 15
2 ([10− 2

√
5]1/2 + [10 + 2

√
5]1/2]) ' 49.165 253 05. (14)

The overall trend of the results,9max(N) ' N−1/2, is of course consistent with the
normalizations introduced in equations (9)–(11), etc.

It is convenient to begin the Hausdorff distance calculations by considering the special
caseδ(CLs , C

R
s ), where all the charges of both chiral pairs have the standard positions set up
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Table 2. Angular coordinates in radians of the ‘left’ and ‘right’ Coulomb states forN = 15 in
standard position.

CLS (Er1(φL1 , θL1 , . . . , Er15(φ
L
15, θ

L
15)) CRS (Er1(φR1 , θR1 , . . . ,Er15(φ

R
15, θ

R
15))

Charge Colatitude Longitude Partial Charge Colatitude Longitude Partial
numberi φLi θLi energy numberj φRj θRj energy

1 0 0 5.333 55 1 0 0 5.333 55
2 2.094 0 5.333 55 2 2.094 0 5.333 55
3 2.094 3.142 5.333 55 3 2.094 −3.142 5.333 55
4 1.792 2.129 5.384 08 4 1.915 −1.074 5.384 08
5 1.915 −2.068 5.384 08 5 1.915 2.068 5.384 08
6 1.792 −1.012 5.384 08 6 0.979 1.653 5.384 08
7 0.979 1.489 5.384 08 7 1.792 −2.129 5.384 08
8 1.915 1.074 5.384 08 8 0.979 −1.489 5.384 08
9 0.979 −1.653 5.384 08 9 1.792 1.012 5.384 08

10 2.712 −1.354 5.394 19 10 1.010 −2.640 5.394 19
11 1.010 2.640 5.394 19 11 1.010 0.501 5.394 19
12 2.712 1.787 5.394 19 12 2.712 1.354 5.394 19
13 1.184 −2.687 5.394 19 13 2.712 −1.787 5.394 19
14 1.010 −0.501 5.394 19 14 1.184 −0.455 5.394 19
15 1.184 0.455 5.394 19 15 1.184 2.687 5.394 19

in [12]. In these orientations, the vectorsEr1(φL1 , θL1 ) andEr1(φR1 , θR1 ), which locate the charges
with the least partial energies, both point to the ‘north pole’, i.e.,φL1 = φR1 = 0. The charges
with the next higher partial energiesEr2(φL2 , θL2 ) andEr2(φR2 , θR2 ) are positioned so that they are
placed at zero longitude,θL2 = θR2 = 0. These conventions—which are explained in detail
in section 2B of [12]—eliminate the rotational degeneracies that would otherwise occur in
orienting the Coulomb configurations on the sphere. Table 2 displays these standard charge
positions for the special caseN = 15. This is the smallest value ofN for which the stable
equilibrium configurations of the surface Coulomb problem consist of an enantiomorphic pair
of states. These systems are comprised of five parallel rings each containing three charges:
the three charges with the lowest partial energies (i = 1, 2, 3 andj = 1, 2, 3 in table 2) form
equilateral triangles around a great circle. The other four triangles are obtained by imparting
a twist to the successive rings. Since these twists can be made either in a clockwise or an
anticlockwise direction, the resulting pair of configurations cannot be superposed by rotations
or proper isometries [12, 19].

The basic angular array (2) can now be obtained by repeated application of (12). When
both charge configurations are in the standard positions—whereEr1(φL1 , θL1 ) andEr1(φR1 , θR1 )
both point to the ‘north pole’—it is trivial to verify from (1) that911 = cos−1(Er1 ·Er1) vanishes
identically. But, of course, the other diagonal terms, e.g.9ll for l > 3, may have non-zero
values. The simple example934 = cos−1(Er3(2.094, 3.142) · Er4(1.915,−1.074)) = 1.792 6=
943 = cos−1(Er4(1.792, 2.129) ·Er3(2.094,−3.142)) = 0.979, shows that in general9ij 6= 9ji .
Table 3 lists all of theN2 = 225 angular distances between all pairings of charges from
CLS (15) andCRS (15). The same indexing conventions for numbering the individual charges—i

for charges inCLS (15) andj for charges inCRS (15)—are used in tables 2 and 3. For clarity,
the table entries are rounded to four significant figures: these results are extracted from more
complete computations utilizing angular coordinates for the Coulomb configurations which
are accurate to at least seven significant digits [12].
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Table 3. Angular array for determining the Hausdorff distance between the two chiral Coulomb
states forN = 15. Both states are aligned in the standard positions described in the text. Table
entries are in radians.

j

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.000 2.094 2.094 1.915 1.915 0.979 1.792 0.979 1.792 1.010 1.010 2.712 2.712 1.184 1.184
2 2.094 0.000 2.094 0.979 1.792 1.915 1.915 1.792 0.979 2.712 1.184 1.010 1.184 1.010 2.712
3 2.094 2.094 0.000 1.792 0.979 1.792 0.979 1.915 1.915 1.184 2.712 1.184 1.010 2.712 1.010
4 1.792 1.915 0.979 2.572 0.136 0.931 1.948 2.572 1.087 1.640 1.736 1.059 1.661 2.586 0.818
5 1.915 1.792 0.979 0.931 1.948 2.572 0.136 1.087 2.572 1.059 2.586 1.640 0.818 1.736 1.661
6 1.792 0.979 1.915 0.136 2.572 2.572 1.087 0.931 1.948 1.736 1.640 1.661 1.059 0.818 2.586
7 0.979 1.792 1.915 2.572 1.087 0.136 2.572 1.948 0.931 1.661 0.818 1.736 2.586 1.640 1.059
8 1.915 0.979 1.792 1.948 0.931 1.087 2.572 2.572 0.136 2.586 1.059 0.818 1.640 1.661 1.736
9 0.979 1.915 1.792 1.087 2.572 1.948 0.931 0.136 2.572 0.818 1.661 2.586 1.736 1.059 1.640

10 2.712 1.010 1.184 0.818 1.640 2.586 1.059 1.736 1.661 1.966 2.193 0.838 0.179 1.674 2.193
11 1.010 2.712 1.184 2.586 1.059 0.818 1.640 1.661 1.736 0.838 1.674 1.966 2.193 2.193 0.179
12 2.172 1.184 1.010 1.640 0.818 1.736 1.661 2.586 1.059 2.193 1.966 0.179 0.838 2.193 1.674
13 1.184 2.172 1.010 1.736 1.661 1.640 0.818 1.059 2.586 0.179 2.193 2.193 1.674 1.966 0.838
14 1.010 1.184 2.712 1.059 2.586 1.661 1.736 0.818 1.640 1.674 0.838 2.193 1.966 0.179 2.193
15 1.184 1.010 2.712 1.661 1.736 1.059 2.586 1.640 0.818 2.193 0.179 1.674 2.193 0.838 1.966

The simple structure of the angular array in table 3 makes it easy to identify the extremals
required for the distance measures in (3) and (4). Evidently the successive minima by rows are
given by the underlined entries minj 91j = 0,minj 92j = 0, . . . ,minj 915j = 0.179; and
therefore the largest angle among this set of minima is given by

max
i

min
j
9ij = 0.179= δ(CLs (15)→ CRs (15)) (15)

for all the pairs (i = 13, j = 10), (15,11), (12,12), (10,13), (14,14) and (11,15). As indicated in
(3), this angle corresponds to the (un-normalized) Hausdorff distance fromCLs (15) toCRs (15).
Since the minima by columns in table 3 also lead to the same set of underlined entries, i.e.
mini 9i1 = 0,mini 9i2 = 0, . . . ,mini 9i15 = 0.179, it is clear that the complementary
Hausdorff distance (4)

max
j

min
i
9ij = 0.179= δ(CRs (15)→ CLs (15)) (16)

from CRs (15) to CLs (15) is also equivalent to the preceding result (15). In this symmetric
situation, the standard Hausdorff distance (5) between the setsCLs (15) andCRs (15)—given by
the maximum of (15) and (16)—is therefore also equal to

δ(CLs (15), CRs (15)) = 0.179. (17)

Finally, since table 1 shows that the largest possible value of9 is 9max = 0.616 for
N = 15, the normalized Hausdorff–Mislow distance between the ‘left’ and the ‘right’ chiral
states—when both are oriented in the standard position—is given by (cf (10)):

d(CLs (15), CRs (15)) ' 0.179

0.616
= 0.291. (18)

According to this criterion, the spatial disposition of the chargesCLs (15) andCRs (15) is quite
different despite the obvious correspondences among the coordinates displayed in table 2.
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4. Minimum Hausdorff metrics and structural spectroscopy

The next logical step is to drop the restriction that the chiral states are confined to standard
orientations, and to find the minimum possible Hausdorff distance between theCL(15) and
CR(15) configurations when they are free to rotate relative to each other. In principle this is a
straightforward procedure: without loss of generality, one of the states, sayCLs (15), may be
chosen to remain fixed in the standard orientation, while the other,CR(15), is rigidly revolved
and spun through the three angular degrees of freedom of theO3 rotation group. These
reorientations can be carried out by tilting the ‘north pole’ charge ofCR(15)—specifically,
the charge labelledj = 1 in table 2—from its initial position at colatitudeφ = 0, longitude
θ = 0, to colatitudeα, rotating to longitudeβ, and then recomputing the associated new
coordinates of all the other chargesj = 2, . . . ,15, resulting from this rigid rotation. For
clarity, note that theβ rotations occur about a fixed axis through the north pole, while the
α tilts are equivalent to rotations about a succession of horizontal axes. The third degree of
freedom can be taken into account by constructing an axis extending from the centre of the
sphere to the new location of the reference charge,j = 1 atα, β, and then rigidly rotating the
entire tiltedCR(15) configuration through an angleγ about this axis. The geometry of these
Euler angle rotations is shown in figure 8 of the appendix. The corresponding trigonometric
transformations that implement the isometric mappings of all the charge coordinates are also
given in the appendix.

In practice, the tilting of the ‘north pole’ or reference charge is programmed so that theα

andβ coordinates successively coincide with every point of the 1◦ grid previously set up for the
9max calculations in (8). At every gridpoint, the corresponding set of chiral distances, (9) and
(10), can be obtained by recomputing the angular array (2). In these cases, the individual9ij
entries represent the angular separations between theith charge in the standardCLs state and
the new positions of thej th charge in the tiltedCR configurations. Computing the entire set
of Hausdorff distances on the 1◦ tilt grid for all 912 chiral pairs in the interval 156 N 6 112
requires two days’ CPU time on an SGI workstation.

The results are summarized in figure 1 and table 4. Obviously, larger values of the
normalized Hausdorff distances appear more frequently asN increases. This general trend
confirms Mislow’s basic conjecture that complex configurations with the least symmetry
also have the greatest chirality [10]. Since the angular separations between the nearest-
neighbour charges in the Coulomb configurations are scaled by the Coulomb angle2C(N)—
cf section 4E.1 and table VIII of [12]—it is plausible that for arbitrary relative orientations
of CL(N) andCR(N) the most probable value of the normalized Hausdorff distance is of
the order of2C(N)/29max(N). This estimate may be confirmed by averaging over the
20 chiral pairs that occur forN = 94; in this case it is easy to verify that both indices,
〈2C(94)〉/2〈9max(94)〉 = 0.72 and〈d(CL(94), CR(94))〉 = 0.72, lead to equivalent results.
But apart from a general correlation between greater complexity and increasing chiral distances,
it is also apparent from figure 1 and table 4 that there are considerable fluctuations. For
instance, atN = 100 the Hausdorff distances between the 18 chiral pairs vary between 0.089
and 0.799. This sensitive dependence of the Hausdorff distance on the detailed structure of
the individual charge configurations contrasts favourably with the insensitive variation of the
Coulomb energies: the maximum energy difference among all of the 34 states that occur for
N = 100 is only about 0.01%.

The Hausdorff distances listed in table 4 are the minimum values for all chiral pairs
CLs (N) and CRgrid(N) found when the ‘north pole’, or reference charge, ofCRgrid(N) is
successively tilted through 1◦ intervals of the colatitudeα and longitudeβ. This 1◦ grid includes
179×360 + 2= 64 442 distinct positions, each yielding a value ofd(CLs (N), C

R
grid(N)). The
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Figure 1. Minimum normalized Hausdorff distance (11) versus the number of chargesN for 912
chiral pairs of Coulomb states.

distance entries marked by crosses (+) in table 4 correspond to situations where the minimum
values ofd(CLs (N), C

R
grid(N)), resulting from grid searches, coincide withd(CLs (N), C

R
s (N)),

the Hausdorff distances between chiral pairs when both configurations are in the standard
orientation. These ‘standard’ distance minima occur for about 8% of all pairs up toN = 112.
In principle, still lower values of the Hausdorff distances may be located by rotating the tilted
CRgrid(N) configurations about the third Euler angleγ shown in figure 8 in the appendix. If
these rotations are carried out in 1◦ increments ofγ about axes that coincide with every point
of the 1◦α–β grid, then the basic angular array in (2) has to be recomputed for a total of about
2.3× 107 relative rotations ofCLs (N) andCR(N). In the particular case ofN = 15, this
comprehensive search yields a minimum Hausdorff distance (cf (11)) of

dmin(C
L(15), CR(15)) = min

O3

d(CLs (15), CRgrid(15)) = 0.291 (19)

which turns out to be no lower than the standard minimum listed in table 4 and equation (18).
Clearly the variations of the Hausdorff distances depend on the relative orientation of

pairs of charge configurations as well as the coarseness and distribution of the rotation
grids. Consequently the frequency distributions of the Hausdorff distances contain information
concerning the intrinsic shapes of the charge structures. In the interest of clarity and consistency
this analysis will be illustrated with the non-uniform 1◦α–β grid used in the minimum Hausdorff
distance searches, although grids that are uniformly distributed over the sphere are better
suited for some purposes. The icosahedron is a convenient illustration of this structural
spectroscopy because its symmetries are so well known [20, 21]. Specifically, ifCs(12)denotes
an icosahedron in the standard orientation shown in figure 2, andCgrid(12) is a copy that is
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Table 4. Normalized Hausdorff distancesd between chiral pairs of Coulomb states for selected
values ofN .

N E d N E d

15 49.165 25 0.291+ 91 3661.817 98 0.811
16 92.911 66 0.224+ · · ·
23 203.930 19 0.528 · · ·
24 223.347 07 0.418 96 4089.257 54 0.148
26 265.133 33 0.329+ · · ·
27 287.309 61 0.536+ · · ·
28 310.491 54 0.421 96 4089.258 10 0.773
29 334.634 44 0.156+ · · ·
30 359.603 94 0.497 100 4448.447 21 0.089+

· · · · · ·
· · · 100 4448.489 60 0.799+

35 498.569 87 0.115 · · ·
· · · 106 5016.053 72 0.159
· · · · · ·
51 1099.819 29 0.255+ · · ·
· · · · · ·
88 3416.772 59 0.527+ · · ·
· · · 112 5618.2348 0.817
· · · · · ·
88 3416.732 91 0.802 112 5618.170 23 0.387

Figure 2. Plan and elevation of an icosahedron. The upper ring of charges (open squares #2–#6)
forms a regular pentagon; the lower ring (open circles #7–#11) is another regular pentagon shifted
by 36◦ longitude relative to the upper ring. The central dot in the plan view represents the north
(#1) and south (#12) pole charges. The significance of the dotted circles is discussed in the text.
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Table 5. Selected values of the Hausdorff distance distribution for the icosahedron. A graph of
F(d) covering the entire range 06 d 6 1 is given in figure 3.

d F(d)

0.000 1
0.001 0
· ·
· ·
· ·
0.026 0
0.027 370
0.028 0
· ·
· ·
· ·
0.053 0
0.054 370
0.055 0
· ·
· ·
0.059 20
· ·
· ·
0.855 595
0.856 745
0.857 325
· ·
· ·
0.996 0
0.997 20
0.998 0

rigidly tilted and rotated so that its north pole charge (#1) traverses the 1◦α–β grid, then the
top line of table 5 confirms that the Hausdorff distance between the two icosahedra vanishes
only when they coincide, i.e. the frequency functionF has the valueF(0) = 1. The first
non-trivial entry,F(0.027) = 370, results from tilting charge #1 ofCgrid(12) to colatitude
α = 1◦, and then traversing around the north pole in 1◦ steps of the longitudeβ—these rotations
are represented by the inner dotted circle on the plan view in figure 2. Obviously, these 1◦

off-sets imply that all of the angular distances between nearest-neighbour charges of the two
icosahedra are also of the order of 1◦, and therefore the associated normalized Hausdorff
distance (cf (13)),d = 1◦/37.377◦ ' 0.0267, appears 360 times. The ten additional matches
result from tilting charge #1 ofCgrid(12) to colatitudeα = 179◦, near charge #12 at the south
pole. This inverted position generally does not lead to a near coincidence of the two icosahedra
because their pentagonal rings are offset by 36◦. However it is easy to show with the pentagon
models snipped from figure 2, that at the five special longitudes,β = 0◦, 72◦, 144◦, . . . ,288◦,
the ring charges are nearly aligned—allowing for the 1◦ discretization there are in fact ten such
positions. Accordingly, for these particular orientations, the Hausdorff distances between the
icosahedra also have the minimal valued ' 0.027. Similar remarks apply to the second
increment of tiltα = 2◦, corresponding to the outer circle of figure 2, and the next entry,
F(0.054) = 370, in table 5. A graphical summary of the entire Hausdorff distance distribution
F(d) is displayed in figure 3. The 0.0267 distance intervals between the prominent spectral
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Figure 3. Frequency distribution of the Hausdorff distances for an icosahedron.F(d) is the number
of orientations on a spherical latitude–longitude grid with 6.4×104 points that yield the same value
of the Hausdorff distanced. The 0.0267 spacing between the prominent spectral lines is due to
the 1◦ discretization of the grid; the line ‘intensities’ and other features reflect the structure of the
icosahedron.

lines are a direct reflection of the discretization due to the 1◦α–β grid; the heights of the
individual lines are determined by the structure of the icosahedron. In particular, the maximum
valueF(0.856) = 745 occurs within 1% of the most probable distance inferred from (13), i.e.
2C(12)/29max(12) ' 63.434◦/2×37.277◦ ' 0.849. This peak is sharp because it coincides
with the 32nd multiple of the line spacing 0.026 75. The last entries in table 5 also have
an obvious interpretation. The normalized Hausdorff distances can reach their upper bound
(d → 1) only when at least one vertex ofCgrid(12) approaches one of the maximumERP points
found in (8): the icosahedron has exactly 20 of these points—each one centred at a distance
of ' 0.205 above the mid-point of every triangular face.

Figure 4 shows the corresponding results for the chiral pairCLs (15) andCRgrid(15). In
this case the Hausdorff distance distribution also includes a prominent line spectrum spaced
at intervals of 1◦/9max(15) ' 1◦/35.28◦ ' 0.0283; but, in contrast to the icosahedral
distribution, the spectrum begins atd ' 0.291 because of the lower bounds set by (18) and (19).
The sharp increase fromF = 16 toF = 82 atd ' 0.697 occurs when the normalized Hausdorff
distances become comparable to the smallest characteristic length associated with theCL,R(15)
states, i.e.2c(15)/29max(15) ' 49.22◦/2 × 35.28◦ ' 0.697. Beyond this threshold, the
spectrum reflects the quasi-regular structure of the chiral configurations. Specifically, the
five triangular rings that make upCL,R(15) correspond to ‘Coulomb’ polyhedra [12] with
39 edges grouped into seven sets of distinct (normalized) lengths ranging from 0.697 to
0.961. Their weighted average, 0.813, nearly coincides with the maximum spectral intensity
F(0.906) ' 474 shown in figure 4. Evidently more refined features of the spectrum encode
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Figure 4. Frequency distribution of the Hausdorff distances between the chiral Coulomb states
CL(15) andCR(15). In this situation the lower bound of the spectrum is atdmin = 0.291(19), and
the line spacing is 0.0283. The occurrence of the ‘shoulder’ at 0.7, and the position of the spectral
peak at 0.9 are discussed in the text.

additional information concerning the shapes and relative orientations ofCL(15) andCR(15).
More complicated examples show that this kind of combination of Hausdorff distances and
statistics is useful in discriminating among structures that are too complex for conventional
symmetry classifications.

5. Saddle point heights and reptation transforms

Since computer trials sampling about 2.3× 107 relative orientations ofCL(15) andCR(15)
do not lead to any values of the minimum Hausdorff distance lower than that already found
for the standard charge positions listed in table 2, the associated Hausdorff matrix in table 3
acquires an additional significance: in this instance, the Hausdorff construction implies that
the underlined entries represent a special set of pairings of theith charges inCL(15) and the
j th charges inCR(15) with the property that all of their angular separations are minimal. In
other words, the maximum overlap betweenCL(15) andCR(15) occurs when they are both
in standard orientation, and furthermore, the underlinedi ↔ j pairings in table 3 indicate a
minimal set of charge interchanges that convertCLs (15) toCRs (15) and vice versa. If we now
recall thatCLs (15) andCRs (15) also correspond to degenerate minima on an energy surface in
a 29-dimensional space, it is plausible that the minimum saddle point height—or activation
complex—separating these states of maximum overlap lies along a path of minimal deformation
that effects the transformationsCLs (15)↔ CRs (15). The analytical version of this construction
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is the well known mountain pass theorem [22].
In order to obtain quantitative estimates of the saddle point heights it is, of course,

necessary to specify the deformation paths in detail. Since every path actually corresponds to
a different transition process, even the constraints implied by the minimum Hausdorff distance
constructions still allow for an enormous latitude in the variety of transformations that connect
CLs (15) to CRs (15). Nevertheless, the underlined pairings of charges in table 3 suggests an
extremely simple and straightforward procedure for estimating upper bounds for anyCL(N)

andCR(N) couple once their minimum Hausdorff distance orientations have been identified.
Let φLi , θLi andφRj , θRj denote the angular coordinates of theith andj th charges ofCLs (15)
andCRs (15) as specified in table 2. Then assume that in the first approximation the shift from
CLs (15) toCRs (15) is carried out by means of a set of linear transformations

θi(s) = θLi + s(θRj − θLi ) (20)

and

φi(s) = φLi + s(φRj − φLi ) (21)

where the common parameter 06 s 6 1 acts as reaction coordinate, and thei ↔ j pairings
are taken from table 3.

i ↔ j i ↔ j i ↔ j

(1) 4 5 (5) 8 9 (9) 12 12
(2) 5 7 (6) 9 8 (10) 13 10
(3) 6 4 (7) 10 13 (11) 14 14
(4) 7 6 (8) 11 15 (12) 15 11.

(22)

This simple prescription obviously yields a smooth transition fromCLs (15) toCRs (15) ass
increases from 0 to 1. If we denote the intermediate configurations byCT (s) = C(φi(s), θi(s)),
andE[CT (s)] is the corresponding Coulomb energy, then evidently [12],

E[CLs (15)] = E[CT (0)] ' 80.670 244' E[CT (1)] = E[CRs (15)] (23)

where Max[E[CT (s)]], for some 0< s < 1, is the saddle point energyfor this particular
choice of path. However, computer trials quickly show that this scheme is not viable because
Max[E[CT (s)]] ' O(100). This result implies that the saddle point energy is comparable to the
average energy of random sets of 15 charges on the unit sphere (〈ERan(15)〉 = 152/2= 112.5;
cf (3.6) of [12]); or, equivalently, that the saddle point height is of the order of the average
altitude of a typical Coulomb ‘landscape’. It is easy to check that although each charge position
is shifted by only about 10◦—which is considerably smaller than the 49◦ separation between
neighbouring charges—the simultaneous movements prescribed by (20) and (21) bring about
a transient crowding of charges that results in a significant energy rise.

This is an instructive failure which shows that the coherent movements of complex
structures may be impeded by internal energy barriers. Only special kinds of deformations—
analogous to the incremental collapse mechanisms of extended frameworks [23]—are
energetically favoured. Among these transformations is the extreme option of transferring
charges one at a time. Analytically, this is simply done by increasings from 0 to 1 in the first
pair of relations in (20)–(22), while keeping all the other charges fixed. After this transfer
is complete,s is increased from 0 to 1 in the next pair (2), thereby moving chargei = 5
to the positionj = 7; these stepwise transfers are then continued until all the charges have
been reassembled inCRs (15). Computer simulations of this entire set of sequential shifts lead
to the surprising result that the maximum intermediate energy is now only 0.2% higher than
the chiral endpoint energy 80.670 in (23). Obviously that raises the question of whether still
lower saddle point energies might be found by varying the order of the charge transfers in
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Figure 5. Averaged Coulomb energy profile of ‘reptation’ transforms between two chiral states.
The maximum saddle point height exceeds theCL,R(15) energies by only 0.2%. The scallops
correspond to the serial transfer of 12 charges averaged over 2000 sequences randomly chosen
from (22). s̄ is a generalized reaction coordinate: 36 s̄ 6 4 transfers the first charge; 46 s̄ 6 5
the second charge, etc.

(20) and (21). Since the pairings in (22) can be rearranged into a total of 12! sequences,
it is, of course, impractical to search through all of them; but it is feasible to use pseudo-
random number generators to select a sample of 2000 different sets of charge transfers and
evaluate the associated energies. Figure 5 shows the resulting averaged energy profiles of these
transitions. Again, the average saddle point energy, Max〈E[CT (s)]〉2000 ' 80.854, is only
about 0.2% higher than the ground state energy. The 12 scallops in figure 5 correspond to the
sequential transfers of single charges. As expected, the average energy profile is symmetric
about its midpoint, even though the individual charge transfer sequences—which cross different
mountain passes betweenCLs (15) andCRs (15)—generally have asymmetric energy variations.

These results have several broader implications:

(1) In general, searches for the lowest mountain passes on the energy landscapes of complex
systems follow along paths of least energy. In the particular case of the Coulomb
configurations, the key finding of the computer explorations is that sequential charge
movements occur with lower energy variations than collective displacements mediated by
(20) and (21). If this trend can be extrapolated to much more complex systems it may be
a contributing factor to the occurrence of reptation in polymer dynamics.

(2) The estimate thatCLs (15) andCRs (15) are separated by a saddle point whose energy is
only 0.2% higher than the ground state energies, implies that these states are joined by at
least one ‘reaction pathway’ that follows along a nearly flat valley bottom on the energy
landscape. A still lower mountain pass route with an energy increment of only 0.002%
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Figure 6. Hausdorff metric constructions for two sets,AandB, each
consisting of two points. The distances are displayed in table 6.

has recently been found by Toomre [24]. Both of these results clearly show that although
CLs (15) andCRs (15) are sharply differentiated by chiral symmetry, the interconversion of
CLs (15) ↔ CRs (15) is barely inhibited by energy barriers. This rudimentary model may
be related to the spontaneous racemization that occurs in some amino acids. It is well
known that the L-amino acids (L= levorotatory) commonly found in living systems are
the result of the stereochemical specificity of enzymes that utilize only the L-enantiomers
[25]. However, the L-aspartic acid in human tooth enamel converts into the D-aspartic
enantiomer at a nearly constant rate of about 0.1% per year. This provides a chiral marker
for determining human biological age [25–27].

(3) The local energy minima of many cooperative systems—including the Coulomb
configurations and simple protein models—are nearly all degenerate. This implies that
the associated energy landscapes are bounded below by a single hyperplane that is
approximately tangent to every local minimum. Consequently, the minimum energies
have no direct relation to the size of the capture basins or probabilities of occurrence of
particular states (Levinthal’s paradox [28]). These degeneracies are regarded as essential
in some complex organic molecules because otherwise evolution would have simply
minimized energy rather than optimize functionality and fitness [29]. Comparisons of
the energy profiles of the 2000CLs (15) ↔ CRs (15) transitions show that this pervasive
degeneracy can extend from states to processes: all of these transformations flow through
a narrow energy band limited by the maximum and minimum saddle point heights,
i.e. 80.9469− 80.7878 ' 0.16. Levinthal’s paradox re-emerges at this level because
alterations in the order of the charge transfers have negligible influence on the energy
variations.

6. Asymmetric Hausdorff distances and parity

The origin of asymmetries in the Hausdorff distances between sets is illustrated by the simple
example of figure 6. Obviously, the smallest disc centred at the pointsB-1 andB-2, that
includes at least one point of the setA, has radius

√
2: in contrast, the smallest disc centred at

A-1 andA-2, that includes at least one point of the setB, has radius
√

5. Table 6 which is a
mini-version of (2), together with (3)–(5), then shows that the corresponding set of Hausdorff
distances is given by

δ(A→ B) = √5 δ(B → A) = √2 (24)

and

δ(A,B) = √5. (25)

In general, these distances depend both on the configurations as well as the relative
positions of the sets. But if we specializeA to represent a finite set of points on the surface of
a sphere, andB is another set obtained by reflectingA in a great circle, followed by rotation
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Table 6. Euclidean and Hausdorff distances between the point setsA andB in figure 6.

Minimum Max–min
B-1 B-2 by rows by rows

A-1
√

5
√

10
√

5
√

5→ δ(A→ B)

A-2 1
√

2 1
Minimum
by columns 1

√
2

Max–min
by columns

√
2→ δ(B → A)

Figure 7. Hausdorff distances between two rotated chiral statesCLs (15) andCRα,β(15). The shaded
zones indicate relative orientations with symmetric Hausdorff distances. The bull’s eye atα = 168◦,
β = 57◦ corresponds to an orientation with maximally asymmetric distances.

about a point on that same circle, then the Hausdorff distances betweenA andB are necessarily
symmetric [30]. Since these rotatory reflections include chiral pairs of Coulomb states, this
lemma accounts for the symmetry of the Hausdorff distances betweenCLs (15) andCRs (15)
found previously in (15) and (16).

These constraints do not apply to the more general transformations such as the tilts and
rotations utilized in section 4 in the search for minimum Hausdorff distances. To be specific,
let CRα,β(15) represent theCRs (15) configuration after it has been isometrically shifted so
that its ‘north pole’ charge is at colatitudeα longitudeβ. By recomputing the associated
Hausdorff matrix (2) for every value ofα andβ, it is possible to compare the two distances
δ(CLs (15) → CRα,β(15)) and δ(CRα,β(15)) → CLs (15)). These results are summarized in
figure 7. The shaded zones in theα–β plane—which cover about 25% of the total area—
indicate relative orientations ofCLs (15) andCRα,β(15) with symmetric Hausdorff distances:
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the remaining blank spaces correspond to asymmetric distances. Some features of these zone
patterns are intuitively plausible. For instance, sinceCR0,β(15) coincides withCRs (15), the
equality of the distances in (15) and (16) shows thatα = 0 must be the boundary of the shaded
zone. Continuity implies that this zone extends at least as far asα ' O(10◦) because this is
the minimum (non-vanishing) angular separation between the charges inCRs (15) andCLs (15).
The bull’s eye atα = 168◦ andβ = 57◦ indicates a relative orientation where the directed
Hausdorff distances between the chiral pairs are maximally different, i.e.

d(CLs (15)→ CR168◦,57◦(15)) = 0.779< 0.968= d(CR168◦,57◦(15)→ CLs (15)). (26)

Equation (26) effectively says thatCLs (15) is a better fit toCR168◦,57◦(15) than the other way
around, even though the intrinsic structures of both states are simply related by rotatory
reflections. This result is another illustration of the general principle that increasing complexity
is correlated with symmetry breaking. Several clear examples are provided by the surface
Coulomb states: for instance, the dipole moments of all the equilibrium configurations
C(N), 2 6 N < 11 vanish in apparent harmony with general parity arguments [31], but,
beginning withC(11), states with finite moments occur with increasing frequency. Similarly,
despite the spherical symmetries of the Coulomb interaction and the boundary conditions,
chiral solutions that ‘spontaneously’ break rotational symmetry first appear atN = 15. The
symmetry breaking in (26) is qualitatively different because complexity in this situation arises
from a particular algorithm, or process, that links the two states. If the separation between
CLs (15) andCRα,β(15) were measured by the Euclidean distance between sets [32], rather than
the Hausdorff distance, there would be no asymmetries. A physical parallel is the conservation
of parity in strong interactions and the breaking of this symmetry by weak interactions.

Of course, global symmetries can occasionally be restored by appealing to statistical
balance: the dipole moment ofC(11) can point in any direction; each of the two chiral states
CL(15) andCR(15) occurs with 50% frequency; and the obvious symmetries of the zone
patterns aboutβ = 0◦ in figure 7 show that there are complementary set orientations where the
inequality in (26) is reversed. But these arguments in turn are merely circular consequences
of the ‘principle of insufficient reason’ [33], and it is easy to construct counter-examples [12].
There is, in fact, a lengthy history of fallacies and contradictory conclusions which shows that
this ‘principle’ is too vague to be useful for the foundations of probability and decision theory
[33].

7. Speculative extensions

The computer explorations in section 5 were carried far enough to verify that the Hausdorff
metric could be used as an aid to locate saddle points on the energy surfaces of the spherical
Coulomb problem. If a sufficient number of these saddle points could be found, crude estimates
of the relative sizes of various capture basins would be feasible, and the results correlated with
the available statistics on the associated frequencies of occurrence [12]. Model studies suggest
that some complex gradient systems preferentially evolve towards a small subset of energy
minima because these minima are surrounded by large capture basins. This topographic bias
is presumed to be the accelerated selection mechanism that bypasses Levinthal’s paradox [34].
The next step is to identify the structural characteristics that permit the maximum crowding
of states with the least energy cost in these favoured basins. Since the Hausdorff distance is
a natural measure of the resemblance, or nearness, of configurations, it seems reasonable to
include this information by superposing a Hausdorff metric on the energy landscapes.

The symmetry breaking inherent in the formation of chiral states and dipole moments is
the basis for many physical effects such as optical rotation and piezoelectricity. It is interesting
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Table 7. Partial Coulomb interaction energies (27) and (28), for the chiral statesCLs (15),
CR168◦,57◦ (15).

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ei
a 5.11 4.47 3.94 3.58 4.09 4.84 3.64 3.97 3.94 4.06 4.11 3.63 3.50 3.57 3.58

Ej
a 4.39 3.75 3.72 3.53 4.25 3.80 4.17 4.31 3.74 3.77 4.02 4.90 3.21 4.80 3.68

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a Add 10 to every entry to obtain the actual value.

to speculate whether the extreme asymmetry expressed by the differences of the Hausdorff
distances in (26) might also have some consequences for ‘real world’ physics. One tangible
link is the Coulomb energy of the individual charges in a configuration [35]. Columns 4 and 8
in table 2 show how the total Coulomb energy (' 80.670) of theCL,R(15) states is apportioned
among the various charges. Obviously the distribution of these partial energies is the same for
both enantiomers, and is also preserved for all isometric transformations of each configuration.
However, this symmetry does not extend to the mutual Coulomb energies of the chiral states.
Letψij denote the angular separation between theith charge inCLs (15) and thej th charge of
the tilted configurationCR168◦,57◦(15), cf (1). The interaction energy then is1

2 csc(9ij /2), and
consequently

Ei = 1
26j csc(9ij /2) (27)

is the partial Coulomb energy of theith charge due to its interaction with all the charges in
CR168◦,57◦(15). Similarly

Ej = 1
26i csc(9ij /2) (28)

is the partial energy of thej th charge due to its interaction with all the charges inCLs (15).
Since the basic Hausdorff matrix (2) for these relative orientations has already been computed
for (26), it is straightforward to obtain the distribution of partial energies. The essential result,
which is apparent from table 7, is that none of the entries forEi andEj match. This implies that
the Coulomb energy environment and the internal forces of the two chiral states are completely
different (diastereoisomerism), although the total interaction energies and forces balance, e.g.
6iEi = 6jEj ∼= 210.

The correlations between symmetry breaking and complexity are also related to the deeper
question of whether all the information contained in functions ofn (>2) variables can be
completely encoded by the superposition of functions of fewer variables. Precise mathematical
formulations of these issues stem from Hilbert’s 13th problem [36]. The principal conclusions
of these studies are twofold: (i) continuous functions ofn (>2) variables can generally be
represented by finite combinations of continuous functions of one and two variables; but (ii) if
further degrees of smoothness—such as continuous differentiability—are imposed, then it is
possible to prove the existence of intrinsically irreduciblen-place functions [36]. Since the zone
boundaries in figure 7 mark breaks in the continuous differentiability of the Hausdorff distances,
it is plausible that the irreducibility results of (ii) may be relevant. In these cases the Hausdorff
distances could be associated with collective forces—analogous to exchange forces—that
incorporate more information than is contained in the underlying Coulomb interactions [37].
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Figure 8. Rotations of Coulomb configurations. The full circles show the movement of the
reference charge; the open circles show the associated movement of theith charge.

discussions and orientations to the literature.

Appendix. Rotations of Coulomb configurations

Let C(Eri(φi, θi)), 1 6 i 6 N , denote a Coulomb state specified by a set of radial vectors,
|Eri | = 1, that locate theN point charges on the surface of the unit sphere. The angular positions
of the charges are given by the colatitudesφ, 0 6 φ 6 π , and longitudesθ , −π 6 θ 6 π .
Initially, the C states are oriented so that a charge—called the reference charge—is located
at the north pole,φ = 0 [12]. If the reference charge is moved to colatitudeα and longitude
β—as shown in figure 8—a rigid tilting and rotation of theC-state to the new orientationCα,β
will move theith charge fromφi, θi to φ̄i , θ̄i . The new angular coordinates are given by

φ̄ = cos−1[cosα cosφ − sinα sinφ cos(θ − β)]. (29)

Furthermore

sin(θ̄ − β) = sin(θ − β) sinφ/ sinφ̄ (30)

and

cos(θ̄ − β) = [cosφ − cosφ̄ cosα]/ sinφ̄ sinα. (31)

Since−π 6 θ̄ 6 π , both (30) and (31) are required to fix the value ofθ̄ . (For simplicity, the
subscripti is omitted in equations (29)–(37)). If a charge initially happens to be at colatitude
α(φ = α), and is on the same meridian as the reference charge(θ = β + π), its new position
will coincide with the north pole,̄φ = 0. In these cases, the analytical indeterminacy of
(30) and (31) reflects the fact that the longitude is not defined at the pole. Allowance for this
contingency has to be included in the computer routines.

The remaining ‘spin’ degree of freedom is represented by a rotation through an angle
γ, 0 6 γ 6 2π , about an axis passing through the reference charge atα, β, and the centre
of the sphere. As indicated in figure 8, this spin results in a further movement of theith
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charge from the intermediate coordinatesφ̄i , θ̄i , to its final position atφ∗i , θ
∗
i . The associated

computations can be expressed concisely in terms of two auxiliary angles, 06 ξ 6 π and
06 γ ′ 6 2π , given by

ξ = cos−1[cosα cosφ̄ + sinα sinφ̄ cos(θ̄ − β)] (32)

and

sin(γ + γ ′) = sin(θ̄ − β) sinφ̄/ sinξ (33)

cos(γ + γ ′) = [cosφ̄ − cosα cosξ ]/ sinα sinξ. (34)

In parallel with (30) and (31), both (33) and (34) are required to find the value ofγ ′

corresponding to a particular choice ofγ . Finally,

φ∗ = cos−1[cosα cosξ + sinα sinξ cosγ ′] (35)

and

sin(θ∗ − β) = sinξ sinγ ′/ sinφ∗ (36)

cos(θ∗ − β) = [cosξ − cosα cosφ∗]/ sinα sinφ∗. (37)

In practice, the invariance of the partial Coulomb energies of all the charges is checked after
every rotation.
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